If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-508=0
a = 1; b = 4; c = -508;
Δ = b2-4ac
Δ = 42-4·1·(-508)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-32\sqrt{2}}{2*1}=\frac{-4-32\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+32\sqrt{2}}{2*1}=\frac{-4+32\sqrt{2}}{2} $
| 0=b^2+30B+29 | | 5x-14=8x=+4 | | 4=10v-8v | | 0=z^2+7z+12 | | x/5+12=13 | | (x)^2=(4)(4+5) | | 19=y/3-11 | | -5=-4x-6x-5 | | (-2x-3)(2x-6)=0 | | -3y+18=-5y+3 | | s/6-2=10 | | -9=5x=51 | | 8-7x=2-(x+6) | | j^2+6j+8=0 | | 15t+5=3t+17 | | x+44=2x-4 | | 9x-41=29 | | x+16=2x-34 | | 3(d-2)/9+5=7 | | (9^2x)=12 | | x+16=x-17 | | 5x-12=3x+40 | | 18x^2=72x | | (3^x)=243 | | -2x+4x=-26+1 | | x^2+2x+18=-2x-11 | | a-1+1=a | | (4)(4+x)=(3)(3+21) | | b÷3.3+5=15 | | 1/3(x+3)=28 | | 3x-8=23- | | x^2+31x=11x-36 |